欢迎访问东吴公考官网
东吴公考全国咨询电话:400-088-0828
当前位置: 首页 > 行测辅导 > 数量关系 >

数量关系

2021江苏公务员考试行测备考:概率问题的解答

       概率问题的解题难点往往不在概率公式本身,而是对于题目描述事情的理解,甚至很多概率衍生到一些排列组合的知识点,多知识点结合是概率难题的一大特点。但因为概率问题、排列组合问题都是基于事件完成过程的分析,所以排列组合中的一些原理同样可以应用于概率。下面我们在习题中感受一下。

【例】1.在正方体中任意选择两条棱,则这两条棱相互平行的概率为

 

【答案】C.东吴解答:要求两条棱相互平行的概率,可以先固定一条棱,与之平行的棱有3条,可选择的总数为11条,故两条棱相互平行的概率为,故选择C项

由这道题我们可以总结,要求两个事物之间存在特殊关系时,我们可以分步来考虑,先定位其中一个事物,再考虑第二个事物,整个事件的概率马上就能分析清楚。

【例】2.某单位工会组织桥牌比赛,共有8人报名,随机组成4队,每队2人。那么,小王和小李恰好被分在同一队的概率是:

 

【答案】A。东吴解答:假设小王已经分好队,剩下7个位置小李可以选择,要想和小王一队,只有一种情况,两人被分在同一队的概率是,故选择A项

【例题详解】销售员小刘为客户准备了A、B、C三个方案。已知客户接受方案A的概率为40%。如果接受方案A,则接受方案B的概率为60%,反之为30%。客户如果A或B方案都不接受,则接受C方案的概率为90%,反之为10%,问将3个方案按照客户接受概率从高到低排列,以下正确的是:

A.A>B>C   B.A>C>B   C.B>A>C   D.C>B>A

       这道题目告诉我们什么呢?说是的客户对于小刘提供的ABC三个方案的接受与否的概率信息,让我们解决每种方案接受的概率大小问题。既然是解决概率,我们要看题干告诉的关于接受A、B、C的概率条件。这时我们可以发现,除A以外,BC方案的接受概率都会随着另外的方案去变化,条件较多,我们整理一下:

①接受A为40%;

②接受A后,接受B为60%;

③不接受A后,接受B为30%;

④AB都不接受,接受C为90%;

⑤AB中接受了一种或两种,接受C为10%。

此时我们发现,如果想求B或者C的概率,就要去找到哪些情况下B、C会发生,以B为例,B发生可以是②也可以是③,此时②和③的关系类似于排列组合中的分类,分类的方法数计算用加法,这里概率计算同样用加法,即接受B的概率等于②③概率之和。

   那我们继续分析②,接受A之后,接受B为60%,接受A之后再接受B,在40%的基础上再发生一个60%,类似于排列组合问题中的分步,分步的方法数计算用乘法,这里概率计算同样用乘法,所以②对应的概率为40%×60%=24%。

   同理,③中是不接受A再接受B,概率依旧相乘,为(1-40%)×30%=18%。

   所以接受B的概率为24%+18%=42%。

分析清楚B之后,再来看C,想要接受C可以是④也可以是⑤,分类关系,故接受C的概率为④⑤概率的和。

   在④中,AB都接受,再接受C,分步关系,概率应相乘;AB都不接受其实就是不接受A并且不接受B,概率为60%×(1-30%)=42%,所以④发生的概率为42%×90%=37.8%。

   在⑤中,AB至少接受一个即为AB都接受的反面,概率为1-42%=58%,此时接受C的概率为10%,故⑤发生的概率为58%×10%=5.8%。

   那么接受C的概率就为37.8%+5.8%=43.6%。

此时得出结论,C>B>A,选D选项。

       这道题目中我们分析计算概率的方式,用到了分类、分步中的加乘原理。只要分析清楚题干描述事件发生的方式,结合加乘就可以顺利计算出所求概率。值得注意的是,前提条件,概率能相加的前提是事件之间不交叉即分类关系,概率能相乘的前提是先后完成即分步关系。

       以上是行测中概率问题,你学会了吗?公考并不难,只要肯耐下性子学,东吴教育祝愿您公考顺利。

 

 

最新推荐

03-082021年苏州高新区公共卫生事业单位招聘公告

03-082021年3月8日国内外时事政治

03-082021年3月7日国内外时事政治

03-082021年3月6日国内外时事政治

03-082021年江苏省属事业单位招聘咨询监督举报电话表

03-082021年宿城区事业单位招聘人员职位表

03-082021年宿城区事业单位招聘人员公告

03-082021年宿迁市市属事业单位招聘职位表

03-082021年国考国家国际发展合作署面试公告

03-082021年国家公务员国资委面试公告