数量关系
1.
在1000以内,除以3余2,除以7余3,除以11余4的数有多少个?
A.4
B.5
C.6
D.7
2.
王静把12600元钱存人银行A,年利息率为7.25%,如果他把这些钱存人银行B,利息率是6.5%,那么她一年少得多少利息?( )A.194.5元
B.94.5元
C.84.5元
D.47.25元
3.
甲乙两个工程队修一条公路,甲工程队修了500米以后,乙工程队来修,以往资料显示,乙工程队的效率是甲工程队的2倍,乙工程队修600米公路所用的时间比甲工程队修500米公路时间还少20天,甲工程队效率是( )米/天。
A.25
B.15
C.20
D.10
4.往一个空的正方体鱼缸里装水,装完第一次水后,水面的高度为5厘米,之后每次的装水量都是上一次的两倍。当装完第四次水后,水面距离鱼缸顶部还有15厘米,则该鱼缸的高度是( )厘米。
A.50
B.75
C.90
D.105
5.
某工厂接到制造6000个A种零件、2000个B种零件的订货单,该厂共224名工人,每人制造5个A种零件与制造3个B种零件所用时间相同。现把全厂工人分成甲、乙两组分别制造A、B零件,并同时开始投入生产。两组各分配多少人才能使完成订货单任务所用的时间最少?( )A.80、144
B.96、128
C.128、96
D.144、80
答案与解析
1.答案: B
解析:
解析一:此题不属于余同、差同及和同问题,属于周期问题,有余数出现即为不完全周期问题。先从“除以7余3,除以11余4”入手,寻找满足“除以7余3,除以11余4”的周期。此数可写成:x=7a+3或者x=11b+4,(a、b为正整数)即x=7a+3=11b+4,不难得出满足等式的最小整数x=59,同时59满足"除以3余2”这个三位数可写成3×7×11n+59,n可以取0、1、2、3、4,答案选B。
解析二:同余问题,不符合“余同取余,和同加和,差同减差,最小公倍数做周期”的口诀,通过余数组获得通式。除以3余2的余数组为2、5、8、11、14、17、···;除以7余3的余数组为3、10、17、···。结合此两者可知满足前两条的被除数可写成21n+17,其余数组为17、38、59、···;而除以11余4的余数组为4、15、26、37、48、59、···。结合此两者可知满足三条的被除数可写成231n+59。由题意:0≤231n+59≤1000,解得0≤n≤4。所以这样的数共有5个,故正确答案为B。
口诀解释:余同取余,例如“一个数除以7余1,除以6余1,除以5余1”,可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如“一个数除以7余1,除以6余2,除以5余3”,可见除数与余数的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如“一个数除以7余3,除以6余2,除以5余1”,可见除数与余数的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。
2.答案: B
解析:
根据利息差异,一年少得的利息为12600×(7.25%-6.5%)=12600×0.75%=126×3/4=94.5元,故答案为B。
3.答案: D
解析:
解析1:
根据题意,甲乙工程队的效率比是1:2,则工作时间比是2:1,假设乙工程队修500米的时间是x天,则甲工程队需要用时2x,而乙工程队修600米的时间是(6/5)x,从而有2x-(6/5)x=20,解得x=25,所以甲工程队修500米的时间是50天,则效率为500/50=10米/天,故正确答案为D。
解析2:
甲乙工作时间比是2:1,乙工程队修500米的时间和修600米的时间是5:6,联立则有甲修500米时间和乙修600米的时间是10:6=5:3,由于差值是20天,所以甲修500米的时间是5×20/2=10天,则其效率是500/50=10,故正确答案为D。
4.答案: C
解析:
因为水缸的底面积相同,所以每次加水会因为水面高度不同而水的体积不同,第一次的水面高度为5cm,根据题意可知第二次的水面高度为10cm,第三次的水面高度为20cm,第四次的水面高度为40cm,距离顶部还有15cm,所以鱼缸的高度是90cm。
5.答案: D
解析:
最新推荐
03-082021年3月8日国内外时事政治
03-082021年3月7日国内外时事政治
03-082021年3月6日国内外时事政治
03-082021年宿城区事业单位招聘人员职位表
03-082021年宿城区事业单位招聘人员公告
03-082021年宿迁市市属事业单位招聘职位表
03-082021年国考国家国际发展合作署面试公告
03-082021年国家公务员国资委面试公告